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Abstract: Intramolecular Pauson-Khand reactions of 1,6-enynes 3a-c with a methylenecyclopropane terminator and a
chiral acetal moiety adjacent to the triple bond gave spiro{cyclopropane-1,4'-bicyclo[3.3.0]oct-1-en-3-ones} Sa-c in
good yields with a diastereoselectivity of up to 6.4:1. The major diastereomer of 5b was converted to enantiomerically
pure bicyclo[3.3.0]octane-3,8-dione 8, which showed a negative peak at 287 nm in the CD curve, consistent with an
assumed (SR) configuration.

Intramolecular Pauson-Khand reactions (PKR)2 of 1,6-enynes3 to form bicyclo{3.3.0Joct-1-en-3-ones proceed
particularly well when the double bond is part of a methylenecyclopropane moiety. In order to demonstrate
the full potential of this approach to spiro{cyclopropane-1,4-bicyclo[3.3.0]oct-1-en-3-ones} we have tested
the possibility of asymmetrically inducing the cyclization with a chiral auxiliary adjacent to the triple bond in
the 1,6-enyne, especially since only a few examples of PKR with asymmetric induction have been reported to
date.S
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As Magnus et al. have demonstrated,3 high diastereoselectivities can be obtained in the intramolecular
PKR. On the basis of their mechanistic rationalization it was conceived that a cyclopropylidenealkyne of type
3 with a Cy-symmetric acetal moiety next to the triple bond — by favouring an intermediate with the
configuration as in 4 — might lead to an asymmetric induction in the cyclization step.6 The 6-cyciopropylidene-
1-hexyn-3-one 2 was prepared by reacting the ester 17 with lithium trimethylsilylacetylide in the presence of
boron trifluoride etherate8 (80% yield), and converted to the acetals 3a-c by transacetalization® with the
appropriate ethanediol!? and trimethy] orthoformate (Scheme 1).

Although heavily substituted, the trimethylsilyl protected alkynes 3a-c!? underwent trialkylamine oxide
promoted PKR!3 quite well (63-76% yield). The diastereoselection in the cyclization of 3a with a
dimethylsubstituted acetal moiety was only 2 : 1, according to GC, but increased to 5 : 1 for the diphenyl 3b
and even 6.4 : 1 for the dicyclohexyl derivative 3c.11

The diastereomers of Sb and 5¢ could be separated by column chromatography.!4 Further transformations
were performed with the major diastereomer of 5b, which was assumed to have (5R) configuration on the basis
of the adopted mechanism with a preferred intermediate 4.15 In order to determine the absolute configuration
of the bicyclo[3.3.0Joctenone skeleton, it was attempted to cleave off the chiral auxiliary in the
acetal moiety. Upon treatment of Sb with acetone and p-toluenesulfonic acid, however, not only acetal
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cleavage, but also double bond migration occurred to yield the achiral bicyclo[3.3.0Joctenedione 6 (Scheme 2).
Therefore, lithium dimethylcuprate was first added to the enone moiety in 5b, before the dioxolane was
hydrolyzed. Surprisingly, acetal cleavage in the resulting 7 (2-endo/2-exo = 1 : 7) was quite slow, within 2 h at
room temperature only protiodesilylation occurred to give 9. Only upon prolonged heating under reflux, 9
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eventually gave the dione 8 with [a]X = 148 ° (c = 1, CHCl3). The CD curve with a negative peak at 287 nm
(ellipticity of 550°) is consistent with the absolute configuration!6 being (5R) as assumed on the basis of the
preferred orientation of bulky groups in the intermediate 4.

This model study demonstrates a new asymmetric variant of the intramolecular Pauson-Khand reaction. It is
conceivable that further tailoring of the acetal moiety may lead to even higher diastereoselectivities. To
achieve this, it is however essential to have the methylenecyclopropy! terminator in the precursor enyne;
control experiments showed that enynes without this end group reacted only poorly and only under more
drastic conditions (hexane, 110 °C), albeit with nearly the same diastereoselectivity.
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The relative configuration of compounds 5a-c at C-5 could not be established by 2D-NMR. (NOESY) spectroscopy.
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